Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Mol Biosci ; 8: 658687, 2021.
Article in English | MEDLINE | ID: covidwho-1389215

ABSTRACT

Many current strategies for inducing an immune response rely on the production of an antigenic protein. Such methods can be problematic if the folding of the antigenic protein is incorrect. To avoid this problem, we propose a method based on grafting specific regions of the chosen antigenic protein onto biocompatible polymeric matrices, so that they can mimic portions of the antigenic protein. These regions are selected following the criterion according to which they are not folded, are exposed to the solvent and are not already present in the human body, so that they are not recognized by the immune system as self. Regions are selected using the primary sequence of the protein and, where possible, its tertiary structure. The application of this strategy to the Spike protein of SARS-CoV-2 is presented.

2.
ACS Sens ; 5(8): 2596-2603, 2020 08 28.
Article in English | MEDLINE | ID: covidwho-650062

ABSTRACT

High-throughput and rapid serology assays to detect the antibody response specific to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in human blood samples are urgently required to improve our understanding of the effects of COVID-19 across the world. Short-term applications include rapid case identification and contact tracing to limit viral spread, while population screening to determine the extent of viral infection across communities is a longer-term need. Assays developed to address these needs should match the ASSURED criteria. We have identified agglutination tests based on the commonly employed blood typing methods as a viable option. These blood typing tests are employed in hospitals worldwide, are high-throughput, fast (10-30 min), and automated in most cases. Herein, we describe the application of agglutination assays to SARS-CoV-2 serology testing by combining column agglutination testing with peptide-antibody bioconjugates, which facilitate red cell cross-linking only in the presence of plasma containing antibodies against SARS-CoV-2. This simple, rapid, and easily scalable approach has immediate application in SARS-CoV-2 serological testing and is a useful platform for assay development beyond the COVID-19 pandemic.


Subject(s)
Agglutination Tests/methods , Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Pandemics , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL